Bringing quantum acceleration to HPC

Dr. Peter Eder

Head of Partnerships, IQM Quantum Computers

peter.eder@meetiqm.com

IQM

IQM builds and delivers quantum computers

180+ experts

90 PhDs

34 nationalities

>100 M€ investment

On-premises & full access

2 systems sold

1 delivered

A business strategy to accelerate innovation

Building full-stack systems and delivering them to on-premises to customers Re-invest the revenue to critical parts of the value chain

IQM's strategic value chain:

First quantum computer in thriving Finnish Quantum Ecosystem now operational

Product plans

MARKETS & CUSTOMERS

- · On-prem vs cloud
- Use cases
- Technology Readiness Level (TRL) of IQM
- Market sizes

 Distribution Channels	On-prem	Off-prem
Rented	Rent/Lease	Cloud
Owned	Classic sales	Co- Location

Strategy

advantage

oday	
	ADVANTAGE
FOUNDATION	Enable special-purpose quantum advantage for key customers
quantum computers for research and education	to kickstart the spread o useful quantum
to create ecosystems and to build technological and business capabilities required for quantum	computing and accelera its benefits through co- design

te

DISRUPTION

2030

Provide full quantum advantage for everyone

to advance the world to a new technological era with quantum computing

We build world-leading quantum computers for the wellbeing of humankind, now and for the future

IQM

How does a Quantum Computer look like?

- Cryogenic environment: 20mK (temperature in open space 2.7K)
- ✓ Shielded from environment
- ✓ Vacuum
- Let us look inside!

How does a Quantum Computer look like?

2-4 K 800 mK 100 mK 15-20 mK

Quantum processor sits inside a shield that protects it from EM radiation

Don't forget about history

First Transistor (1948)

Strategic advantage: private quantum foundry in Europe

Drivers:

Quantum processors are too complex for public or university cleanrooms.

Low availability, chip shortage

AUTOS APRIL 9, 2021 / 7:52 PM / UPDATED 2 DAYS AGO

White House convening summit with top execs on chip shortage

By David Shepardson

3 MIN READ 🕇 🕊

WASHINGTON (Reuters) -Almost 20 major companies worried about a global semiconductor chip shortage that has roiled the automotive industry will send senior executives to a White House summit Monday, a senior official said on Friday.

Efficient IP generation

Advantages:

- Accelerates design & production cycle
- Guarantees production stability
- Know-how generation and possibility for foundry service
- Reinforces the in-house developed quantum design automation

IQM

Why HPC & quantum?

HPC centres solve the challenges of tomorrow ...

 $rac{\partial u}{\partial t} = lpha rac{\partial^2 u}{\partial x^2} + f(t,x)$

Climate change & crash simulations Drug discovery, simulations & molecular dynamics Finance, PDEs & optimization problems

HPC tasks have a large overlap with quantum solutions Quantum computing will augment a growing <u>USD 40 Billion*</u> market.

76% of global HPC centers will use quantum computing by 2023***

Painpoints to be solved:

- L HPC centers must scale their computing power to stay competitive, creating a strong innovation pressure
- Next generation HPC hardware gives only incremental improvement, yet being too bulky & too energy comsumptive
- Quantum computers offer exponential computing power for HPC centers but are hardly available

Vision: IQM quantum computer in an HPC center

QM

Quantum acceleration

QUANTUM COMPUTING:

New computing paradigm using quantum bits (qubits) as computation elements. Promise of up-to **exponential** scaling improvements.

HYBRID QUANTUM-CLASSICAL ALGORITHMS:

QC are good at specific tasks. These tasks are part of larger, **complex computations**. HPC workflow **offloads** relevant tasks to **quantum accelerators**.

CONCLUSION:

QC needs to be **integrated** to HPC systems. Development needs to start **now** to increase benefits when **quantum advantage** is available.

Challenges

MINDSET CHANGE:

New paradigm - back to algorithmic drawing board.

USER AWARENESS & ENGAGEMENT:

Simplified user interface. Strong educational support. Single programming environment.

DEPLOYMENT MODEL:

On-premises v. remote v. deep integration.

RESOURCE MANAGEMENT:

Communication protocols. Scheduling for jobs with stochastic runtimes. Management of an increasing number of QCs. Different QCs can have very different specs and be good for specific classes of applications.

76% of HPC Centers to adopt quantum technologies by 2023

IQM, as the global leader in on-premises quantum computers, is well equipped to seize the HPC opportunity. Study findings:

- HPC centres face an increasing pressure to radically innovate their infrastructure, that is currently characterized with long time to output, low energy efficiency, and high capex requirements
- ↓ **110 HPC centres** worldwide, in our latest research list quantum computing as one of the solutions to address their innovation challenge
- 76% of the HPC Centers globally will adopt quantum technologies by 2023. Study revealed that one third of the HPC centres have already begun experimentations
- 71% of the HPC centers will adopt on-premises infrastructure by 2026, due to the notable benefits of on-premises solutions, such as high bandwidth, low latency, and broad availability

IQM Atos

NOVEMBER 2021

Untangling the HPC Innovation Dilemma Through Quantum Computing

On-premise systems

First sale of a quantum accelerator to HPC 20-qubit accelerator to be delivered by mid-2024

IQM

 \boldsymbol{X}

ΥZ

IQM won the public tender arranged by BMBF to build the world's first quantum accelerator to HPC.

Project includes integration of simulation software components (HQS) and hardware (Atos QLM) as well as use-case evaluation.

The 45M EUR project will provide on-site solutions for quantum computing in conjunction with supercomputers which is essential for the development of cutting-edge high-tech solutions from Europe.

2022	2023	2024
INTEGRATION	20-QUBIT	FINAL ON-
DESIGNS	QUANTUM	SITE
READY	ACCELERATOR	ACCEPTANCE

Fast Lane to Quantum Advantage

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Bringing quantum acceleration to supercomputers

MARTIN RUEFENACHT¹, BRUNO G. TAKETANI², PASI LÄHTEENMÄKI³, VILLE BERGHOLM³, DIETER KRANZLMÜLLER¹, LAURA SCHULZ¹, AND MARTIN SCHULZ^{1,4}

¹Leibniz Supercomputing Centre, Garching near München, Germany ²IQM, Nymphenburgerstr. 86, 80636 Munich, Germany ³IQM, Keilaranta 19, 02150 Espoo, Finland ⁴Technical University of Munich, Garching near München, Germany

18

How to unlock industry applications?

First-to-market in selected applications using a fast lane to quantum advantage

Thank you for tuning in!

www.meetiqm.com

WE ARE HIRING!

Bruno G. Taketani

HPC Integration Lead

bruno.taketani@meetiqm.com

www.meetiqm.com

Backup

When to utilize quantum?

IQM

How to implement the quantum computing system

The classical computer (HPC)

- Storage arrays, networking, user interface
- Control of quantum algorithm (iterative steps)
- Operates at room temperature
- Controls operation and measurement of qubits
- Operates at cryogenic temperatures
- Qubits located here
- Quantum computing occurs here

IQM QUANTUM COMPUTER

Superconducting qubits as ICs

Two-qubit gate with a third qubit as fluxtunable coupler

24

Fast Lane to Quantum Advantage